Perfect Matching of 2k
Perfect Matching of (2k), concordant, discordant, dissident_greater, dissident_smaller 的統計量 (back to Data page)
定義:
- Perfect Matching of [2n]:
A set partition of [2n] with blocks (disjoint nonempty subsets) of size exactly 2. Let $\mathit{M}_{2n}$ be the set of matchings of [2n], and let $M \in \mathit{M}_{2n}$. The standard form of $M$ is a list of blocks $\{(i_1, j_1), (i_2, j_2), ..., (i_n, j_n) \}$ such that $i_r < j_r$ for all $1\leq r\leq n$ and $1=i_1 < i_2 < ... < i_n$.
- $M=\{(m_1, M_1)(m_2, M_2)...(m_n, M_n)\mid m_1< m_2 <...< m_n\}$
- concordant (cc) =
#$\{i \mid m_i = m_{i-1}+1 \mbox{ and } M_i > M_{i-1}\}$
- discordant (dc) =
#$\{i \mid m_i = m_{i-1}+1 \mbox{ and } M_i < M_{i-1}\}$
- dissident_greater (dsg) =
#$\{i \mid m_i > m_{i-1}+1 \mbox{ and } M_i > M_{i-1}\}$
- dissident_smaller (dss) =
#$\{i \mid m_i > m_{i-1}+1 \mbox{ and } M_i < M_{i-1}\}$
The statistic of [cc, dc, dsg, dss] seems equal to the statistic of [n-1-r, n-1-s, n-1-t, n-1-p], if we combine dog and dss, we can get the following
link
Google Colab
[r, s, t, p] = [n-1-cc, n-1-dc, n-1-dsg, n-1-dss]
n | total | [cc, dc, dsg, dss] | 個數 | [r, s, t, p] |
2 |
3 |
[0, 0, 1, 0] | 1 | [1, 1, 0, 1] |
[0, 1, 0, 0] | 1 | [1, 0, 1, 1] |
[1, 0, 0, 0] | 1 | [0, 1, 1, 1] |
3 |
15 |
[0, 0, 2, 0] | 1 | [2, 2, 0, 2] |
[0, 1, 1, 0] | 4 | [2, 1, 1, 2] |
[0, 2, 0, 0] | 1 | [2, 0, 2, 2] |
[1, 0, 0, 1] | 1 | [1, 2, 2, 1] |
[1, 0, 1, 0] | 3 | [1, 2, 1, 2] |
[1, 1, 0, 0] | 4 | [1, 1, 2, 2] |
[2, 0, 0, 0] | 1 | [0, 2, 2, 2] |
4 |
105 |
[0, 0, 3, 0] | 1 | [3, 3, 0, 3] |
[0, 1, 1, 1] | 1 | [3, 2, 2, 2] |
[0, 1, 2, 0] | 10 | [3, 2, 1, 3] |
[0, 2, 1, 0] | 11 | [3, 1, 2, 3] |
[0, 3, 0, 0] | 1 | [3, 0, 3, 3] |
[1, 0, 1, 1] | 5 | [2, 3, 2, 2] |
[1, 0, 2, 0] | 6 | [2, 3, 1, 3] |
[1, 1, 0, 1] | 6 | [2, 2, 3, 2] |
[1, 1, 1, 0] | 30 | [2, 2, 2, 3] |
[1, 2, 0, 0] | 11 | [2, 1, 3, 3] |
[2, 0, 0, 1] | 5 | [1, 3, 3, 2] |
[2, 0, 1, 0] | 6 | [1, 3, 2, 3] |
[2, 1, 0, 0] | 11 | [1, 2, 3, 3] |
[3, 0, 0, 0] | 1 | [0, 3, 3, 3] |
5 |
945 |
[0, 0, 4, 0] | 1 | [4, 4, 0, 4] |
[0, 1, 2, 1] | 6 | [4, 3, 2, 3] |
[0, 1, 3, 0] | 20 | [4, 3, 1, 4] |
[0, 2, 1, 1] | 7 | [4, 2, 3, 3] |
[0, 2, 2, 0] | 59 | [4, 2, 2, 4] |
[0, 3, 1, 0] | 26 | [4, 1, 3, 4] |
[0, 4, 0, 0] | 1 | [4, 0, 4, 4] |
[1, 0, 1, 2] | 1 | [3, 4, 3, 2] |
[1, 0, 2, 1] | 15 | [3, 4, 2, 3] |
[1, 0, 3, 0] | 10 | [3, 4, 1, 4] |
[1, 1, 0, 2] | 1 | [3, 3, 4, 2] |
[1, 1, 1, 1] | 73 | [3, 3, 3, 3] |
[1, 1, 2, 0] | 122 | [3, 3, 2, 4] |
[1, 2, 0, 1] | 23 | [3, 2, 4, 3] |
[1, 2, 1, 0] | 173 | [3, 2, 3, 4] |
[1, 3, 0, 0] | 26 | [3, 1, 4, 4] |
[2, 0, 0, 2] | 5 | [2, 4, 4, 2] |
[2, 0, 1, 1] | 41 | [2, 4, 3, 3] |
[2, 0, 2, 0] | 20 | [2, 4, 2, 4] |
[2, 1, 0, 1] | 63 | [2, 3, 4, 3] |
[2, 1, 1, 0] | 133 | [2, 3, 3, 4] |
[2, 2, 0, 0] | 66 | [2, 2, 4, 4] |
[3, 0, 0, 1] | 16 | [1, 4, 4, 3] |
[3, 0, 1, 0] | 10 | [1, 4, 3, 4] |
[3, 1, 0, 0] | 26 | [1, 3, 4, 4] |
[4, 0, 0, 0] | 1 | [0, 4, 4, 4] |
6 |
10395 |
[0, 0, 5, 0] | 1 | [5, 5, 0, 5] |
[0, 1, 2, 2] | 1 | [5, 4, 3, 3] |
[0, 1, 3, 1] | 21 | [5, 4, 2, 4] |
[0, 1, 4, 0] | 35 | [5, 4, 1, 5] |
[0, 2, 1, 2] | 1 | [5, 3, 4, 3] |
[0, 2, 2, 1] | 82 | [5, 3, 3, 4] |
[0, 2, 3, 0] | 219 | [5, 3, 2, 5] |
[0, 3, 1, 1] | 30 | [5, 2, 4, 4] |
[0, 3, 2, 0] | 272 | [5, 2, 3, 5] |
[0, 4, 1, 0] | 57 | [5, 1, 4, 5] |
[0, 5, 0, 0] | 1 | [5, 0, 5, 5] |
[1, 0, 2, 2] | 7 | [4, 5, 3, 3] |
[1, 0, 3, 1] | 35 | [4, 5, 2, 4] |
[1, 0, 4, 0] | 15 | [4, 5, 1, 5] |
[1, 1, 1, 2] | 45 | [4, 4, 4, 3] |
[1, 1, 2, 1] | 439 | [4, 4, 3, 4] |
[1, 1, 3, 0] | 364 | [4, 4, 2, 5] |
[1, 2, 0, 2] | 9 | [4, 3, 5, 3] |
[1, 2, 1, 1] | 592 | [4, 3, 4, 4] |
[1, 2, 2, 0] | 1297 | [4, 3, 3, 5] |
[1, 3, 0, 1] | 72 | [4, 2, 5, 4] |
[1, 3, 1, 0] | 776 | [4, 2, 4, 5] |
[1, 4, 0, 0] | 57 | [4, 1, 5, 5] |
[2, 0, 0, 3] | 1 | [3, 5, 5, 2] |
[2, 0, 1, 2] | 67 | [3, 5, 4, 3] |
[2, 0, 2, 1] | 184 | [3, 5, 3, 4] |
[2, 0, 3, 0] | 50 | [3, 5, 2, 5] |
[2, 1, 0, 2] | 92 | [3, 4, 5, 3] |
[2, 1, 1, 1] | 1006 | [3, 4, 4, 4] |
[2, 1, 2, 0] | 800 | [3, 4, 3, 5] |
[2, 2, 0, 1] | 454 | [3, 3, 5, 4] |
[2, 2, 1, 0] | 1444 | [3, 3, 4, 5] |
[2, 3, 0, 0] | 302 | [3, 2, 5, 5] |
[3, 0, 0, 2] | 56 | [2, 5, 5, 3] |
[3, 0, 1, 1] | 196 | [2, 5, 4, 4] |
[3, 0, 2, 0] | 50 | [2, 5, 3, 5] |
[3, 1, 0, 1] | 386 | [2, 4, 5, 4] |
[3, 1, 1, 0] | 462 | [2, 4, 4, 5] |
[3, 2, 0, 0] | 302 | [2, 3, 5, 5] |
[4, 0, 0, 1] | 42 | [1, 5, 5, 4] |
[4, 0, 1, 0] | 15 | [1, 5, 4, 5] |
[4, 1, 0, 0] | 57 | [1, 4, 5, 5] |
[5, 0, 0, 0] | 1 | [0, 5, 5, 5] |
7 |
135135 |
[0, 0, 6, 0] | 1 | [6, 6, 0, 6] |
[0, 1, 3, 2] | 8 | [6, 5, 3, 4] |
[0, 1, 4, 1] | 56 | [6, 5, 2, 5] |
[0, 1, 5, 0] | 56 | [6, 5, 1, 6] |
[0, 2, 2, 2] | 42 | [6, 4, 4, 4] |
[0, 2, 3, 1] | 503 | [6, 4, 3, 5] |
[0, 2, 4, 0] | 646 | [6, 4, 2, 6] |
[0, 3, 1, 2] | 10 | [6, 3, 5, 4] |
[0, 3, 2, 1] | 644 | [6, 3, 4, 5] |
[0, 3, 3, 0] | 1762 | [6, 3, 3, 6] |
[0, 4, 1, 1] | 102 | [6, 2, 5, 5] |
[0, 4, 2, 0] | 1089 | [6, 2, 4, 6] |
[0, 5, 1, 0] | 120 | [6, 1, 5, 6] |
[0, 6, 0, 0] | 1 | [6, 0, 6, 6] |
[1, 0, 2, 3] | 1 | [5, 6, 4, 3] |
[1, 0, 3, 2] | 28 | [5, 6, 3, 4] |
[1, 0, 4, 1] | 70 | [5, 6, 2, 5] |
[1, 0, 5, 0] | 21 | [5, 6, 1, 6] |
[1, 1, 1, 3] | 11 | [5, 5, 5, 3] |
[1, 1, 2, 2] | 498 | [5, 5, 4, 4] |
[1, 1, 3, 1] | 1823 | [5, 5, 3, 5] |
[1, 1, 4, 0] | 896 | [5, 5, 2, 6] |
[1, 2, 0, 3] | 1 | [5, 4, 6, 3] |
[1, 2, 1, 2] | 647 | [5, 4, 5, 4] |
[1, 2, 2, 1] | 6468 | [5, 4, 4, 5] |
[1, 2, 3, 0] | 6528 | [5, 4, 3, 6] |
[1, 3, 0, 2] | 48 | [5, 3, 6, 4] |
[1, 3, 1, 1] | 3578 | [5, 3, 5, 5] |
[1, 3, 2, 0] | 10018 | [5, 3, 4, 6] |
[1, 4, 0, 1] | 201 | [5, 2, 6, 5] |
[1, 4, 1, 0] | 3027 | [5, 2, 5, 6] |
[1, 5, 0, 0] | 120 | [5, 1, 6, 6] |
[2, 0, 1, 3] | 39 | [4, 6, 5, 3] |
[2, 0, 2, 2] | 443 | [4, 6, 4, 4] |
[2, 0, 3, 1] | 604 | [4, 6, 3, 5] |
[2, 0, 4, 0] | 105 | [4, 6, 2, 6] |
[2, 1, 0, 3] | 48 | [4, 5, 6, 3] |
[2, 1, 1, 2] | 2335 | [4, 5, 5, 4] |
[2, 1, 2, 1] | 7930 | [4, 5, 4, 5] |
[2, 1, 3, 0] | 3331 | [4, 5, 3, 6] |
[2, 2, 0, 2] | 913 | [4, 4, 6, 4] |
[2, 2, 1, 1] | 12990 | [4, 4, 5, 5] |
[2, 2, 2, 0] | 14567 | [4, 4, 4, 6] |
[2, 3, 0, 1] | 2498 | [4, 3, 6, 5] |
[2, 3, 1, 0] | 11146 | [4, 3, 5, 6] |
[2, 4, 0, 0] | 1191 | [4, 2, 6, 6] |
[3, 0, 0, 3] | 71 | [3, 6, 6, 3] |
[3, 0, 1, 2] | 936 | [3, 6, 5, 4] |
[3, 0, 2, 1] | 1234 | [3, 6, 4, 5] |
[3, 0, 3, 0] | 175 | [3, 6, 3, 6] |
[3, 1, 0, 2] | 1598 | [3, 5, 6, 4] |
[3, 1, 1, 1] | 8190 | [3, 5, 5, 5] |
[3, 1, 2, 0] | 3856 | [3, 5, 4, 6] |
[3, 2, 0, 1] | 4804 | [3, 4, 6, 5] |
[3, 2, 1, 0] | 8840 | [3, 4, 5, 6] |
[3, 3, 0, 0] | 2416 | [3, 3, 6, 6] |
[4, 0, 0, 2] | 364 | [2, 6, 6, 4] |
[4, 0, 1, 1] | 722 | [2, 6, 5, 5] |
[4, 0, 2, 0] | 105 | [2, 6, 4, 6] |
[4, 1, 0, 1] | 1830 | [2, 5, 6, 5] |
[4, 1, 1, 0] | 1398 | [2, 5, 5, 6] |
[4, 2, 0, 0] | 1191 | [2, 4, 6, 6] |
[5, 0, 0, 1] | 99 | [1, 6, 6, 5] |
[5, 0, 1, 0] | 21 | [1, 6, 5, 6] |
[5, 1, 0, 0] | 120 | [1, 5, 6, 6] |
[6, 0, 0, 0] | 1 | [0, 6, 6, 6] |
8 |
2027025 |
[0, 0, 7, 0] | 1 | [7, 7, 0, 7] |
[0, 1, 3, 3] | 1 | [7, 6, 4, 4] |
[0, 1, 4, 2] | 36 | [7, 6, 3, 5] |
[0, 1, 5, 1] | 126 | [7, 6, 2, 6] |
[0, 1, 6, 0] | 84 | [7, 6, 1, 7] |
[0, 2, 2, 3] | 10 | [7, 5, 5, 4] |
[0, 2, 3, 2] | 477 | [7, 5, 4, 5] |
[0, 2, 4, 1] | 2180 | [7, 5, 3, 6] |
[0, 2, 5, 0] | 1626 | [7, 5, 2, 7] |
[0, 3, 1, 3] | 1 | [7, 4, 6, 4] |
[0, 3, 2, 2] | 603 | [7, 4, 5, 5] |
[0, 3, 3, 1] | 6604 | [7, 4, 4, 6] |
[0, 3, 4, 0] | 8411 | [7, 4, 3, 7] |
[0, 4, 1, 2] | 58 | [7, 3, 6, 5] |
[0, 4, 2, 1] | 3840 | [7, 3, 5, 6] |
[0, 4, 3, 0] | 11721 | [7, 3, 4, 7] |
[0, 5, 1, 1] | 303 | [7, 2, 6, 6] |
[0, 5, 2, 0] | 3990 | [7, 2, 5, 7] |
[0, 6, 1, 0] | 247 | [7, 1, 6, 7] |
[0, 7, 0, 0] | 1 | [7, 0, 7, 7] |
[1, 0, 3, 3] | 9 | [6, 7, 4, 4] |
[1, 0, 4, 2] | 84 | [6, 7, 3, 5] |
[1, 0, 5, 1] | 126 | [6, 7, 2, 6] |
[1, 0, 6, 0] | 28 | [6, 7, 1, 7] |
[1, 1, 1, 4] | 1 | [6, 6, 6, 3] |
[1, 1, 2, 3] | 275 | [6, 6, 5, 4] |
[1, 1, 3, 2] | 3175 | [6, 6, 4, 5] |
[1, 1, 4, 1] | 5981 | [6, 6, 3, 6] |
[1, 1, 5, 0] | 1932 | [6, 6, 2, 7] |
[1, 2, 1, 3] | 339 | [6, 5, 6, 4] |
[1, 2, 2, 2] | 11940 | [6, 5, 5, 5] |
[1, 2, 3, 1] | 44598 | [6, 5, 4, 6] |
[1, 2, 4, 0] | 25404 | [6, 5, 3, 7] |
[1, 3, 0, 3] | 12 | [6, 4, 7, 4] |
[1, 3, 1, 2] | 5857 | [6, 4, 6, 5] |
[1, 3, 2, 1] | 66439 | [6, 4, 5, 6] |
[1, 3, 3, 0] | 81044 | [6, 4, 4, 7] |
[1, 4, 0, 2] | 198 | [6, 3, 7, 5] |
[1, 4, 1, 1] | 18111 | [6, 3, 6, 6] |
[1, 4, 2, 0] | 63972 | [6, 3, 5, 7] |
[1, 5, 0, 1] | 522 | [6, 2, 7, 6] |
[1, 5, 1, 0] | 10842 | [6, 2, 6, 7] |
[1, 6, 0, 0] | 247 | [6, 1, 7, 7] |
[2, 0, 1, 4] | 10 | [5, 7, 6, 3] |
[2, 0, 2, 3] | 449 | [5, 7, 5, 4] |
[2, 0, 3, 2] | 2012 | [5, 7, 4, 5] |
[2, 0, 4, 1] | 1626 | [5, 7, 3, 6] |
[2, 0, 5, 0] | 196 | [5, 7, 2, 7] |
[2, 1, 0, 4] | 11 | [5, 6, 7, 3] |
[2, 1, 1, 3] | 2497 | [5, 6, 6, 4] |
[2, 1, 2, 2] | 26301 | [5, 6, 5, 5] |
[2, 1, 3, 1] | 42502 | [5, 6, 4, 6] |
[2, 1, 4, 0] | 10970 | [5, 6, 3, 7] |
[2, 2, 0, 3] | 797 | [5, 5, 7, 4] |
[2, 2, 1, 2] | 40451 | [5, 5, 6, 5] |
[2, 2, 2, 1] | 168924 | [5, 5, 5, 6] |
[2, 2, 3, 0] | 95906 | [5, 5, 4, 7] |
[2, 3, 0, 2] | 6605 | [5, 4, 7, 5] |
[2, 3, 1, 1] | 120580 | [5, 4, 6, 6] |
[2, 3, 2, 0] | 178893 | [5, 4, 5, 7] |
[2, 4, 0, 1] | 11727 | [5, 3, 7, 6] |
[2, 4, 1, 0] | 70554 | [5, 3, 6, 7] |
[2, 5, 0, 0] | 4293 | [5, 2, 7, 7] |
[3, 0, 0, 4] | 39 | [4, 7, 7, 3] |
[3, 0, 1, 3] | 1852 | [4, 7, 6, 4] |
[3, 0, 2, 2] | 7803 | [4, 7, 5, 5] |
[3, 0, 3, 1] | 5435 | [4, 7, 4, 6] |
[3, 0, 4, 0] | 490 | [4, 7, 3, 7] |
[3, 1, 0, 3] | 2859 | [4, 6, 7, 4] |
[3, 1, 1, 2] | 45383 | [4, 6, 6, 5] |
[3, 1, 2, 1] | 83740 | [4, 6, 5, 6] |
[3, 1, 3, 0] | 21370 | [4, 6, 4, 7] |
[3, 2, 0, 2] | 23947 | [4, 5, 7, 5] |
[3, 2, 1, 1] | 166204 | [4, 5, 6, 6] |
[3, 2, 2, 0] | 115927 | [4, 5, 5, 7] |
[3, 3, 0, 1] | 42852 | [4, 4, 7, 6] |
[3, 3, 1, 0] | 110500 | [4, 4, 6, 7] |
[3, 4, 0, 0] | 15619 | [4, 3, 7, 7] |
[4, 0, 0, 3] | 1220 | [3, 7, 7, 4] |
[4, 0, 1, 2] | 7818 | [3, 7, 6, 5] |
[4, 0, 2, 1] | 6091 | [3, 7, 5, 6] |
[4, 0, 3, 0] | 490 | [3, 7, 4, 7] |
[4, 1, 0, 2] | 16402 | [3, 6, 7, 5] |
[4, 1, 1, 1] | 50419 | [3, 6, 6, 6] |
[4, 1, 2, 0] | 15460 | [3, 6, 5, 7] |
[4, 2, 0, 1] | 37206 | [3, 5, 7, 6] |
[4, 2, 1, 0] | 45075 | [3, 5, 6, 7] |
[4, 3, 0, 0] | 15619 | [3, 4, 7, 7] |
[5, 0, 0, 2] | 1814 | [2, 7, 7, 5] |
[5, 0, 1, 1] | 2283 | [2, 7, 6, 6] |
[5, 0, 2, 0] | 196 | [2, 7, 5, 7] |
[5, 1, 0, 1] | 7482 | [2, 6, 7, 6] |
[5, 1, 1, 0] | 3882 | [2, 6, 6, 7] |
[5, 2, 0, 0] | 4293 | [2, 5, 7, 7] |
[6, 0, 0, 1] | 219 | [1, 7, 7, 6] |
[6, 0, 1, 0] | 28 | [1, 7, 6, 7] |
[6, 1, 0, 0] | 247 | [1, 6, 7, 7] |
[7, 0, 0, 0] | 1 | [0, 7, 7, 7] |